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Abstract
A general type of recurrent neural network (termed as Zhang neural network,
ZNN) has recently been proposed by Zhang et al for the online solution of
time-varying quadratic-minimization (QM) and quadratic-programming (QP)
problems. Global exponential convergence of the ZNN could be achieved
theoretically in an ideal error-free situation. In this paper, with the normal
differentiation and dynamics-implementation errors considered, the robustness
properties of the ZNN model are investigated for solving these time-varying
problems. In addition, linear activation functions and power-sigmoid activation
functions could be applied to such a perturbed ZNN model. Both theoretical-
analysis and computer-simulation results demonstrate the good ZNN robustness
and superior performance for online time-varying QM and QP problem solving,
especially when using power-sigmoid activation functions.

PACS number: 07.05.Mh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The online solution of (equality-constrained) quadratic programs (including the quadratic-
minimization (QM) problem solving as its special case) appears to be ubiquitous in science and
engineering fields. It is usually an essential part of the solution of many problems, e.g. optimal
controller design [1], power scheduling [2], robot-arm motion planning [3] and digital signal
processing [4]. A well-accepted approach to solving such quadratic programs is the numerical
algorithms/methods performed on digital computers (e.g. nowadays computers). However,
the minimal arithmetic operations of a numerical quadratic-programming (QP) algorithm
are proportional to the cube of the related Hessian matrix’s dimension. Consequently, such
numerical algorithms may not be efficient enough for large-scale online applications [4].
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Due to the in-depth research on neural networks, numerous dynamic and analog solvers
based on recurrent neural networks have been developed and investigated [5–12] recently. The
neural-dynamic approach is now viewed as a powerful alternative to online computation and
optimization because of its parallel distributed nature and convenience of hardware/circuits
implementation [13–17]. Specifically, the neural approach is also an efficient method for
solving static QM and QP problems [7, 11, 18–20].

The conventional gradient (or gradient-based) neural networks (GNN) have been
proven to be very useful for static (or to say, time-invariant, stationary) matrix/vector
problem solving [7, 13, 19, 21, 22]. However, when applied to time-varying problems,
gradient neural networks (GNN) only work approximately, lagging behind with appreciable
solution errors [13]. In view of this, a special class of recurrent neural networks has
recently been proposed by Zhang et al for the real-time solution of time-varying problems
[13, 23–26]. Different from GNN [13, 17, 19], the design of Zhang neural network (ZNN)
models is based on matrix- or vector-valued indefinite error functions, instead of scalar-
valued positive or lower bounded energy functions. They are depicted generally in implicit
dynamics, instead of explicit dynamics. Furthermore, ZNN modeling and simulation have
been investigated as well, which substantiate the efficacy of this new neural-dynamic method
[25–27].

As shown in [28, 29], ZNN models could converge exactly to the time-varying optimal
theoretical solution when exploited for time-varying QM and QP problem solving. However,
in the hardware implementation of a recurrent neural network, there always exist some
realization errors, which are more complicated than the proved ideal situation. Generally
speaking, an electronic circuit of a neural network is composed of multipliers and amplifiers
[19, 30–32], and each neuron can be implemented by three operational amplifiers: a summing
amplifier, an integrating amplifier and an inverting amplifier [19, 32]. In practice, these
components of the circuit are not under ideal conditions. For example, the tolerance of
electronic components, the finite gain and bandwidth of operational amplifiers and multipliers
are discussed in [30]. The incapacity of electronic components would limit the performance of
the ZNN, and generate various errors, such as differentiation error and model-implementation
error. Due to these realization errors, the solution of the circuit-implementation ZNN
might not be accurate. In this case, robustness analysis of the proposed neural network
would be important and necessary. By analyzing the robustness of ZNN solving time-
varying QM and QP problems, we would know how the design parameters might affect
the performance of the ZNN, and how to improve the robustness of the ZNN. For these
purposes, this paper investigates the robustness properties of the ZNN models with both
differentiation and dynamics-implementation errors considered. Robustness analysis is carried
out by theoretically estimating the upper bound of steady-state errors of the ZNN model
exploited for time-varying QM and QP problem solving. Such upper-bound errors could
be decreased by adjusting the design parameter γ of the ZNN model. Furthermore, using
power-sigmoid activation functions has the superior robustness compared with linear activation
functions.

The remainder of this paper is organized into four sections. Section 2 gives problem
formulation about time-varying QM and QP problems, and describes the situation of using
the ZNN for solving these problems. In section 3, we analyze the robustness performance of
the ZNN when applied to time-varying QM and QP problems; specifically, the solution-error
bound and the superior performance of using power-sigmoid activation functions. Several
illustrative computer-simulation examples are presented in section 4, which solve online
time-varying QM and QP problems via the ZNN. Finally, we conclude this paper with
section 5.
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2. Problem formulation and ZNN solver

To lay a basis for further discussion, the procedure of solving time-varying QM and QP
problems using the ZNN is investigated and developed in this section.

2.1. Time-varying quadratic minimization

Consider the following time-varying QM problem:

minimize f (x) := xT (t)P (t)x(t)/2 + qT (t)x(t) ∈ R, (1)

where the Hessian matrix P(t) ∈ R
n×n is smoothly time-varying, positive-definite and

symmetric for any time instant t ∈ [0, +∞) ⊂ R, and the coefficient vector q(t) ∈ R
n is

smoothly time varying as well. In expression (1), the unknown vector x(t) ∈ R
n is to be

solved to obtain the minimum value of f (x) at any time instant t ∈ [0, +∞).
One simple method of solving the time-varying QM problem (1) could be performed by

zeroing the partial derivative ∇f (x) of f (x) [4] at every time instant t; in mathematics,

∇f (x) := ∂f (x)

∂x
= P(t)x(t) + q(t) = 0 ∈ R

n, ∀ t ∈ [0, +∞). (2)

More specifically, it follows from the above that the theoretical time-varying solution
x∗(t) ∈ R

n to (1), being the minimum point of f (x) at any time instant t, satisfies
x∗(t) = −P −1(t)q(t). The theoretical minimum value f ∗ := f (x∗) of the time-varying
quadratic function f (x) is thus achieved as f ∗ = x∗T (t)P (t)x∗(t)/2 + qT (t)x∗(t).

2.2. Time-varying quadratic programming

Evidently, minimizing quadratic function (1) may not be enough to describe practical problems
in some fields. For instance, in the case of robot-arm motion planning [3, 33–36], the
consideration of end-effector trajectory and joint physical limits is also necessary in a unified
QP formulation, which is subject to linear constraints.

Let us consider the following time-varying convex QP problem subject to a time-varying
linear-equality constraint:

minimize xT (t)P (t)x(t)/2 + qT (t)x(t), (3)

subject to A(t)x(t) = b(t), (4)

where the time-varying decision vector x(t) ∈ R
n is unknown and to be solved at any time

instant t ∈ [0, +∞). In addition to the coefficients’ description in subsection 2.1, in equality
constraint (4), the coefficient matrix A(t) ∈ R

m×n (being of full row rank) and vector b(t) ∈ R
m

are also smoothly time varying.
Based on the knowledge of QP problem solving [28, 29, 37, 38], we can similarly

transform the time-varying QP problem (3)–(4) into the following time-varying linear matrix–
vector equation:

P̃ (t)x̃(t) = −q̃(t), (5)

where

P̃ (t) :=
[
P(t) AT (t)

A(t) 0

]
∈ R

(n+m)×(n+m),

x̃(t) :=
[
x(t)

λ(t)

]
∈ R

n+m, q̃(t) :=
[

q(t)

−b(t)

]
∈ R

n+m,

3
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where λ(t) ∈ R
m denotes the Lagrange-multiplier vector. With the positive-definite matrix

P(t) ∈ R
n×n and the full-row-rank matrix A(t) ∈ R

m×n at any time instant t ∈ [0, +∞),

P̃ (t) ∈ R
(n+m)×(n+m) must be nonsingular at any time instant t ∈ [0, +∞), which guarantees

the solution uniqueness in equation (5) [37, 38]. Moreover, for the purposes of better
understanding and comparison, we know that the time-varying theoretical solution could
be written as

x̃∗(t) = [x∗T
(t), λ∗T

(t)]T := −P̃ −1(t)q̃(t) ∈ R
n+m.

2.3. Zhang neural network

As mentioned in the above sections, the minimization of QM and QP problems could be
transformed into solving linear equations (2) and (5), respectively. For the purpose of further
discussion and convenience, the problems of QM and QP could be formulated in a unified
manner as

W(t)y(t) = u(t), (6)

where

W(t) :=
{
P(t), in QM,

P̃ (t), in QP,
y(t) :=

{
x(t), in QM,

x̃(t), in QP,
u(t) :=

{−q(t), in QM,

−q̃(t), in QP.

The time-varying theoretical optimal solution could be written as y∗(t) = W(t)−1u(t). In
order to describe more conveniently, assuming W(t) ∈ R

n×n, y(t) ∈ R
n and u(t) ∈ R

n. After
the above equation (6) is given, the design procedure of the ZNN could be formalized as
follows.

Step 1. We could define the following vector-valued error function e(t) ∈ R
n; in mathematics,

e(t) := W(t)y(t) − u(t). (7)

Step 2. The time derivative ė(t) of the error function e(t) could be constructed better as (or
termed the general ZNN-design formula)

ė(t) := de(t)

dt
= −γF

(
e(t)

)
, (8)

where, being the reciprocal of a capacitance parameter, the design parameter γ > 0 ∈ R

should be implemented as large as possible or selected appropriately for simulative purposes.
In addition, F(·) : R

n → R
n denotes an activation-function (vector) array; or in other words,

the array F (·) is made of n monotonically increasing odd activation functions f (·) [13, 24]:

• linear activation function f (ei) = ei (with ei being the ith element of the residual-error
vector);

• power-sigmoid activation function

f (ei) =
⎧⎨
⎩

(1 + exp(−ξ))

(1 − exp(−ξ))
· 1 − exp(−ξei)

1 + exp(−ξei)
, if |ei | � 1

e
p

i , if |ei | � 1

with design parameters ξ � 2 and odd integer p � 3.

Step 3. By expanding the ZNN-design formula (8), we have

W(t)ẏ(t) = −Ẇ (t)y(t) − γF
(
W(t)y(t) − u(t)

)
+ u̇(t). (9)

4
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In summary, the following lemma guarantees the excellent convergence of the ZNN model
(9) under ideal conditions, e.g. with no errors involved and using linear or power-sigmoid
activation functions [24–26].

Lemma 1. Given a smoothly time-varying nonsingular matrix W(t) and vector u(t), if a
monotonically increasing odd activation-function array F(·) is used, then the state vector y(t)

of the ZNN model (9) starting from any initial state y(0) globally (exponentially) converges to
the time-varying theoretical solution y∗(t) = W−1(t)u(t).

In practice, however, realization errors always exist in the hardware implementation.
Thus, in the ensuing sections, the robustness properties of the ZNN model (9) are investigated
with normal model-implementation errors involved.

3. Robustness analysis

In the hardware implementation of the ZNN model (9), the differentiation errors about matrix
W(t) and/or vector u(t) as well as the dynamics-implementation error (collectively termed as
the model-implementation error) appear most frequently [31]. Therefore, let us consider the
following dynamic equation which might depict such a perturbed ZNN model (with argument
t omitted sometimes for presentation convenience):

Wẏ = −(Ẇ + �D)y − γF(Wy − u) + u̇ + �m, (10)

where �D(t) ∈ Rn×n denotes the differentiation error of the matrix W(t), and �m(t) ∈ Rn

denotes the dynamics-implementation error (including the differentiation error of the vector
u(t) as a part). These errors may result from truncating/roundoff errors in digital realization
and/or high-order residual errors of circuit components in analog realization (see [13, 19, 31]
and references therein). For the perturbed ZNN model with the differentiation error �D(t)

and the dynamics-implementation error �m(t) involved in (10), we could have the following
theoretical results on robustness.

Theorem 1. If ‖�D(t)‖F � εD, ‖�m(t)‖2 � εm, ‖W−1(t)‖F � ϕW and ‖u(t)‖2 � ϕu

for any time instant t ∈ [0,∞), and 0 < εD, εm, ϕW, ϕu < +∞, then the computational
error ‖y(t) − W−1(t)u(t)‖2 of the perturbed ZNN model (10) using linear or power-
sigmoid activation functions is upper bounded with the maximal steady-state error around
(
√

n + n)ϕW(εm + εDϕWϕu)/2(γρ − εDϕW) under the design-parameter requirement γ >

εDϕW/ρ, where ‖·‖F and ‖·‖2 denote, respectively, the Frobenius norm of a matrix and the
two-norm of a vector, and there exists ρ � 1. In addition, as the design parameter γ tends to
be positive infinity, the steady-state computational error can be decreased to zero.

The proof of theorem 1 can be found in the appendix.
Theorem 1 presents the upper bound of the computational error ‖y(t) − W−1(t)u(t)‖2 of

the perturbed ZNN model (10), which means that the error ‖y(t)−W−1(t)u(t)‖2 could not be
beyond this upper bound. However, in practice, we would like to know whether the perturbed
ZNN model (10) could exponentially converge to an error bound, and how fast could it reach
to this error bound. For completeness of the analysis, the perturbed ZNN (10) is investigated
further, which leads to the following results on global exponential convergence rate and finite
convergence time of ZNN (10) to an error bound of (εm + εDϕWϕu)/α(γρ − εDϕW) with
0 < α < 1 chosen by ZNN users.

Theorem 2. As the same condition in theorem 1, starting from any initial state y(0) ∈ Rn,
the solution error ‖e(t)‖2 of a perturbed ZNN (10) is globally exponentially convergent to or

5
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staying within the error bound (εm + εDϕWϕu)/α(γρ − εDϕW) under the design-parameter
requirement γ > εDϕW/ρ, where the exponential convergence rate is (1 − α)(γρ − εDϕW)

and the convergence time is

tc = ln

(
α(γρ − εDϕW)‖e(0)‖2

εm + εDϕWϕu

)/
((1 − α)(γρ − εDϕW)),

for any α ∈ (0, 1).

The proof of theorem 2 can be found in the appendix.

Theorem 3. In addition to the robustness results in theorems 1 and 2, the perturbed ZNN
model (10) possesses the following properties.

• If linear activation functions are used, the steady-state entry residual error is upper
bounded around (1 +

√
n)(εm + εDϕWϕu)/2(γ − εDϕW) under requirement γ > εDϕW.

Moreover, the solution error ‖e(t)‖2 of a perturbed ZNN (10) is globally exponentially
convergent to or staying within the error bound (εm + εDϕWϕu)/α(γ − εDϕW), where the
exponential convergence rate is (1 − α)(γ − εDϕW) and the convergence time is

tc = ln

(
α(γ − εDϕW)‖e(0)‖2

εm + εDϕWϕu

) /
((1 − α)(γ − εDϕW)),

for any α ∈ (0, 1).
• If power-sigmoid activation functions are used, then we can remove the design-parameter

requirement of γ being large enough, and, in addition, superior robustness properties
(e.g. faster convergence and smaller steady-state error) exist on the whole error range
ei(t) ∈ (−∞, +∞), as compared to the linear-activation case.

The proof of theorem 3 can be found in the appendix.

4. Simulative verification

The robustness analysis of the perturbed ZNN solver (10) has been presented in the above
section. As shown by the theorems in section 3, the solution errors e(t) of the ZNN could
converge to a steady-state error bound in the context of the model-implementation errors.
Observed from the formula of the maximal steady-state error in theorem 1, it is clearly found
that the design parameter γ is inversely proportional to the maximal steady-state error, so we
could increase the value of γ to decrease the upper bound of the steady-state solution error
e(t). In addition, theorem 3 indicates that using power-sigmoid activation functions could
have a superior robustness in the perturbed ZNN model (10) as compared with using linear
activation functions.

For the validity of the above theoretical results, let us consider the following time-varying
coefficients of QM (1) and QP (3):

P(t) =
[

0.5 cos t + 2 sin t

sin t 0.5 sin t + 2

]
, q(t) =

[
sin 3t

cos 3t

]
,

and the following time-varying coefficients of linear-equality constraint (4) in QP:

A(t) = [sin 4t cos 4t], b(t) = cos 2t.

It follows from equation (5) that we have

P̃ (t) =
⎡
⎣0.5 cos t + 2 sin t sin 4t

sin t 0.5 sin t + 2 cos 4t

sin 4t cos 4t 0

⎤
⎦ ,

q̃(t) = [sin 3t, cos 3t, −cos 2t]T ,

6
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0 1 2 3 4 5 6 7 8 9 10
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3

time t (s)

(a) linear activation functions

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

time t (s)

(b) power-sigmoid activation functions

Figure 1. Computational error ‖x(t) + P −1(t)q(t)‖2 of the perturbed ZNN model (10) with
γ = 1, ξ = 4 and p = 3.

and the perturbed ZNN solver (10) with time-varying model-implementation errors as below
(with εD = εm = 0.5).

(1) In the time-varying QM case:

�D(t) = εD

[
cos 4t −sin 4t

sin 4t cos 4t

]
, �m(t) = εm

[
sin 4t

cos 4t

]
.

(2) In the time-varying QP case:

�D(t) = εD

⎡
⎣cos 4t −sin 4t sin 6t

sin 4t cos 4t cos 6t

sin 6t cos 6t 0

⎤
⎦ , �m(t) = εm

⎡
⎣sin 4t

cos 4t

sin 4t

⎤
⎦ .

Starting from six randomly generated initial state x(0), the computer-simulation results
of the time-varying QM problem are shown in figures 1–3. As seen from figures 1 and
2, with the model-implementation errors, the computational error ‖x(t) + P −1(t)q(t)‖2 of
the perturbed ZNN (10) is still bounded and very small. In addition, with γ = 1, the
convergence time of the perturbed ZNN (10) using power-sigmoid activation functions is faster
than that using linear activation functions, and using power-sigmoid activation functions has
smaller steady-state residual error than using linear activation functions. Moreover, comparing
figures 1–3, we can see that, as the design parameter γ increases from 1 to 10 and then to 100,
the convergence is evidently expedited and the upper bound of the steady-state solution error
is decreased substantially (from around 0.17 to 0.03 and then to 0.003). From figure 3(b), we
see little difference between the expected target output and the ZNN output when γ = 10.
These computer-simulation results substantiate well the theoretical results.

The computer-simulation results of the time-varying QP problem solving have been
shown in figures 4 through 6, which are similar to the time-varying QM problem. Figure 4
also indicates the better convergence and robustness of the perturbed ZNN (10) using power-
sigmoid activation functions, compared with the linear case. As the same situation of time-
varying QM problems, increasing γ from 1 to 10 and then to 100, the upper bound of the
steady-state solution error decreases from roughly 0.9 to 0.12, and then to 0.013. Moreover,
from figure 6(b), we see little difference between the expected target output and the ZNN
output when γ = 10. In summary, the above simulation results and observations have agreed
well with the theoretical results presented in section 3.
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(a) synthesized with γ = 10

0 1 2 3 4 5 6 7 8 9 10
0
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0.015
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0.025

0.03

time t (s)

(b) synthesized with γ = 100

Figure 2. Computational error ‖x(t) + P −1(t)q(t)‖2 of the perturbed ZNN model (10) using
power-sigmoid activation functions with ξ = 4 and p = 3.
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−2

−1

0

1

2

0 2 4 6 8 10
−2

−1

0

1

2

time t (s)

time t (s)

x1(t)
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(a) synthesized with γ = 1
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1

2

0 2 4 6 8 10
−2

−1

0

1

2

time t (s)

time t (s)

x1(t)

x2(t)

(b) synthesized with γ = 10

Figure 3. The γ -related robustness of the perturbed ZNN model (10) using power-sigmoid
activation functions, where the dashed–dotted curves correspond to the theoretical solution
−P −1(t)q(t) and the solid curves correspond to the ZNN-computed solutions starting with
randomly-generated initial states.

As presented in theorem 3, when an entry computational error |ei(t)| is larger than
1, the perturbed ZNN (10) using power-sigmoid activation functions could further reduce
|ei(t)| into a smaller error bound, which guarantees the superior property of the ZNN
model solving time-varying QM and QP problems, e.g. faster convergence and smaller
steady-state error. Specially, in the situation involving a large model-implementation
error, superior robustness can be achieved by using power-sigmoid activation functions
exploited by the perturbed ZNN model (10). Now, consider the above time-varying QM
and QP problems again but perturbed with relatively large errors (with εD = εm = 20).
The robustness simulation results are shown in figures 7 and 8. From figure 7, we
can see that, even with very large model-implementation errors, the computational error
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(a) linear activation functions

0 1 2 3 4 5 6 7 8 9 10
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4
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time t (s)

(b) power-sigmoid activation functions

Figure 4. Computational error ‖x(t) + P̃ −1(t)q̃(t)‖2 of the perturbed ZNN model (10) with
γ = 1, ξ = 4 and p = 3.
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(a) synthesized with γ = 10
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time t (s)

(b) synthesized with γ = 100

Figure 5. Computational error ‖x(t) + P̃ −1(t)q̃(t)‖2 of the perturbed ZNN model (10) using
power-sigmoid activation functions with ξ = 4 and p = 3.

‖x(t) + P −1(t)q(t)‖ synthesized by the perturbed ZNN dynamic system (10) using power-
sigmoid activation functions is still bounded and relatively very small (e.g. roughly 7.7).
In contrast, using linear activation functions for (10) in the context of very large model-
implementation errors still generates very large computational error (e.g. more than
2.1 × 104 as depicted in figure 7(a)). Evidently, compared to the situation of using linear
activation functions, superior performance can be achieved by using power-sigmoid activation
functions under the same simulation conditions. The reason for this is that in this larger
error case, γ = 1 cannot satisfy the design parameter requirement on γ when using linear
activation functions, so the upper bound of v̇ in theorem 1 is always a positive scalar,
which might generate the worst situation v̇ > 0 and increase the computational error of
the perturbed ZNN model (10) continuously. Correspondingly, using a power-sigmoid
activation function can remove the requirement on γ presented in theorem 3. To sum
up, the results of figure 7 have agreed well with theorem 3. Furthermore, figure 8 shows
the influence of increasing the value of p. When increasing p from 3 to 5, and to 7, the

9
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Figure 6. The γ -related robustness of the perturbed ZNN model (10) using power-
sigmoid activation functions, where the dashed-dotted curves correspond to theoretical solution
−P̃ −1(t)q̃(t) and the solid curves correspond to the ZNN-computed solutions starting with
randomly-generated initial states.
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(a) linear activation functions
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(b) power-sigmoid activation functions

Figure 7. Computational error ‖x(t)+P −1(t)q(t)‖2 of the perturbed ZNN model (10) using power-
sigmoid activation functions with γ = 1, ξ = 4 and p = 3 and with very large implementation
error.

upper bound of the steady-state solution error decreases from roughly 7.7 to 3.7, and then
to 2.8. These simulation results have also substantiated well the theoretical results presented
before.

One advantage of recurrent neural networks is the nature of parallel and distributed
processing. Compared with the serial-processing algorithms, this kind of approach provides
a powerful alternative in real-time applications, especially in the large-scale cases. For
investigating this computational advantage of the ZNN, we would like to give an example
with different dimensions n of time-varying coefficients W(t) and u(t). Let us consider the
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Figure 8. Computational error ‖x(t) + P −1(t)q(t)‖2 of the perturbed ZNN model (10) using
power-sigmoid activation functions with γ = 1 and ξ = 4 and with very large implementation
error.

following time-varying Toeplitz matrix W(t):

W(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1(t) w2(t) w3(t) · · · wn(t)

w2(t) w1(t) w2(t) · · · wn−1(t)

w3(t) w2(t) w1(t)
. . .

...

...
...

. . .
. . . w2(t)

wn(t) wn−1(t) · · · w2(t) w1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

where w(t) = [w1(t), w2(t), w3(t), . . . , wn(t)]T denotes the first column vector of the matrix
W(t). Let w1(t) = 5 + sin(t) and wk(t) = cos(t)/(k − 1)(k = 2, 3, . . . , n). The time-varying
vector u(t) is

u(t) =
[

sin(3t), sin

(
3t +

π

2

)
, · · · , sin

(
3t +

(n − 1)π

2

)]T

∈ R
n×1.

In addition, we have the following model-implementation errors (with εD = εm = 0.5):

�D(t) = εD

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1(t) d2(t) d3(t) · · · dn(t)

d2(t) d1(t) d2(t) · · · dn−1(t)

d3(t) d2(t) d1(t)
. . .

...

...
...

. . .
. . . d2(t)

dn(t) dn−1(t) · · · d2(t) d1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

�m(t) = εm

[
cos(4t), cos

(
4t − π

2

)
, · · · , cos

(
4t − (n − 1)π

2

)]T

∈ R
n×1,

where d(t) = [d1(t), d2(t), d3(t), . . . , dn(t)]T denotes the first column vector of the matrix
�D(t). Let dk(t) = cos

(
4t + (k−1)π

2

)
(k = 1, 2, 3, . . . , n).

When the design parameter γ = 10 and power-sigmoid activation functions (with ξ = 4
and p = 3) are used, the robustness performance of the perturbed ZNN model (10) can be
seen in figures 10. For clearer comparison, figure 9 shows entry trajectories of the theoretical

11
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Figure 9. Entry trajectories of the theoretical solution W−1(t)u(t).
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Figure 10. Entry trajectories of ZNN-computed solutions using power-sigmoid activation functions
with γ = 10, ξ = 4 and p = 3.

solution W−1(t)u(t). As shown in figure 10, starting from six randomly generated initial states,
the state matrix y(t) of the perturbed ZNN model (10) always converges to the theoretical
time-varying solution, even if the dimension n of the given problem increases from 5 to 15
(which have the small computational error ‖y(t)−W−1(t)u(t)‖2, i.e. roughly 0.01 and roughly
0.06, respectively).

The time-varying coefficients of QM (1) and QP (3) in the above simulation are based on
the sinusoidal form. Now, let us consider the following exponential form in the time-varying
QM problem (with the same time-varying model-implementation errors and εD = εm = 0.5):

P(t) =
[

exp(0.5t) + 1 exp(0.2t)

exp(0.2t) exp(0.5t) + 1

]
, q(t) =

[
exp(0.2t)

exp(−0.1t)

]
.

Similarly, the computational error ‖x(t) + P −1(t)q(t)‖2 of the perturbed ZNN model (10)
also has a very small value (with the related figures omitted). The results are similar to the
above time-varying problem, which shows that the perturbed ZNN model (10) also has a good
robustness performance when exponential functions are considered.

12



J. Phys. A: Math. Theor. 43 (2010) 245202 Y Zhang et al

5. Conclusions

A new type of recurrent neural networks has recently been proposed by Zhang et al for
time-varying problem solving. As the time-derivative information of problem coefficients
is exploited, global exponential convergence of such ZNN models for time-varying QM and
QP problems could be achieved readily under ideal conditions. The main contributions of
this paper lie in the following facts. Firstly, by considering the differentiation and dynamics-
implementation errors, we have investigated the robustness properties of the ZNN model for
time-varying QM and QP problem solving. As a result, even with relatively large model-
implementation errors, the computational error of the perturbed ZNN model is still upper
bounded. Secondly, we have proven that the convergence time and steady-state residual error
can be reduced obviously by increasing the design parameter γ , and using power-sigmoid
activation functions, the perturbed ZNN model can have better robustness than that using
linear activation functions. Thirdly, computer-simulation results have been presented, which
fitted well with the theoretical analysis and further demonstrated the excellent robustness of
the ZNN models for time-varying linear equation solving.

Appendix

The proof of theorem 1. As the time derivative of the residual-error vector e(t) =
W(t)y(t) − u(t) is ė(t) = W(t)ẏ(t) + Ẇ (t)y(t) − u̇(t), the perturbed ZNN model (10)
can be reformulated as follows:

ė = −γF(e) − �DW−1e + �m − �DW−1u. (A.1)

We could then define a Lyapunov function candidate v = ‖e‖2
2

/
2 = eT e/2 =∑n

i=1 e2
i (t)/2 � 0 for dynamic equation (A.1). Evidently, v is positive definite in the sense

that v > 0 for any e �= 0 and v = 0 only for e = 0. In addition, v → ∞ as ‖e‖2 → ∞.
Furthermore, the time derivative of v is

v̇ = eT ė = eT (−γF(e) − �DW−1e + �m − �DW−1u)

= −γ eT F(e) + eT Qe + eT �m + eT (−�DW−1u)

= −γ eT F(e) + eT Q + QT

2
e + eT �m + eT (−�DW−1u) (A.2)

with Q := −�DW−1. For the second term of the above equation, it follows from
max1�i�n |λi(W)| � ‖W‖F that

eT Q + QT

2
e � eT e max

1�i�n

∣∣∣∣λi

(
Q + QT

2

)∣∣∣∣
= eT e max

1�i�n

∣∣∣∣λi

(
�DW−1 + (�DW−1)T

2

)∣∣∣∣
� eT e

∥∥∥∥�DW−1 + (�DW−1)T

2

∥∥∥∥
F

� eT e‖�D‖F ‖W−1‖F � eT eεDϕW.

In addition, for the third and fourth terms of the above v̇ equation, it follows from
max1�i�n |ui | � ‖u‖2 that

13
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eT �m �
n∑

i=1

|ei | max
1�i�n

|[�m]i |

�
n∑

i=1

|ei |‖�m‖2 �
n∑

i=1

|ei |εm,

and from the vector–matrix norms’ relation ‖u‖2 = ‖u‖F [39] that

eT (−�DW−1u) �
n∑

i=1

|ei | max
1�i�n

|[�DW−1u]i |

�
n∑

i=1

|ei |‖�DW−1u‖2 �
n∑

i=1

|ei |‖�DW−1‖F ‖u‖2

�
n∑

i=1

|ei |‖�D‖F ‖W−1‖F ‖u‖2 �
n∑

i=1

|ei |εDϕWϕu.

Hence, in view of the above inequalities, we have

v̇ � −γ eT F(e) + eT eεDϕW +
n∑

i=1

|ei |εm +
n∑

i=1

|ei |εDϕWϕu

= −
n∑

i=1

|ei | (γf (|ei |) − εDϕW|ei | − εm − εDϕWϕu) . (A.3)

The following two situations can now be analyzed.

(i) For the time interval [t0, t1), if γf (|ei |)−εDϕW|ei |−εm−εDϕWϕu � 0,∀i ∈ {1, 2, . . . , n},
then v̇ � 0 which implies that the residual-error vector e(t) of (A.1) converges toward
zero (correspondingly, the state y(t) of the perturbed ZNN model (10) converges toward
the time-varying theoretical solution y∗(t) = W−1(t)u(t)). As time t evolves, if
v̇ = 0 at a certain time instant t2, the residual-error vector e(t) of (A.1) achieves the
steady state; otherwise, it would fall into the following situation as the decreasing of
γf (|ei |) − εDϕW|ei | − εm − εDϕWϕu.

(ii) For any time instant t, if γf (|ei |)−εDϕW|ei |−εm −εDϕWϕu < 0, ∃i ∈ {1, 2, . . . , n}, then
the upper bound of v̇, that is −∑n

i=1 |ei | (γf (|ei |) − εDϕW|ei | − εm − εDϕWϕu), might
be a positive scalar, which means that v̇ contains two cases v̇ � 0 and v̇ > 0, and thus e(t)

may not converge toward zero (correspondingly, the state y(t) of the perturbed ZNN model
(10) may not converge toward the time-varying theoretical solution y∗(t) = W−1(t)u(t)

in this situation). Now let us analyze the worst case, i.e. v̇ > 0: it is readily known that
e(t) diverges outward, and |ei(t)| increases, which decreases the upper bound of v̇ as well
(under requirement γf (|ei(t)|)−εDϕA|ei(t)| � 0), as time t evolves. So, there must exist
a certain time instant t3 such that v̇ = 0 (or < 0), which makes e(t) achieve the steady
state (or decreases again).

From the above theoretical analysis, the residual-error vector e(t) of the perturbed ZNN
model (10) could not always diverge, and is limited into a certain upper bound. For the
convenience of theoretical estimate, we rewrite inequality (A.3) as

v̇ � −
n∑

i=1

|ei | (γρ|ei | − εDϕW|ei | − εm − εDϕWϕu)

= −(γρ − εDϕW)

n∑
i=1

|ei |
(

|ei | − εm + εDϕWϕu

γρ − εDϕW

)
, (A.4)

14



J. Phys. A: Math. Theor. 43 (2010) 245202 Y Zhang et al

where ρ � 1 exists. Now, assuming ∀i ∈ {1, 2, . . . , n − 1},
|ei | = εm + εDϕWϕu

2(γρ − εDϕW)

under the design parameter requirement γ > εDϕW/ρ, so the summation of the former n − 1
elements of equation (A.4) can achieve the maximum value. In this situation, calculating |en|
to zero (A.4),

−
n∑

i=1

|ei |
(

|ei | − εm + εDϕWϕu

γρ − εDϕW

)

= −|en|2 +
εm + εDϕWϕu

γρ − εDϕW
|en| +

n − 1

4

(
εm + εDϕWϕu

γρ − εDϕW

)2

= 0,

and the solution of the above equation is

|en| = 1

2
(1 +

√
n)

εm + εDϕWϕu

γρ − εDϕW
.

So the following inequality always holds true for the perturbed ZNN model (10):

max
1�i�n

|ei(t)| � 1

2
(1 +

√
n)

εm + εDϕWϕu

γρ − εDϕW
. (A.5)

The above inequality indicates that all error terms, |ei(t)|,∀i ∈ {1, 2, . . . , n}, could not go
beyond the upper bound. Because once a residual error |ej (t)|, j ∈ {1, 2, . . . , n}, is beyond
the upper bound, the upper bound of v̇ must be a negative value, which would force ‖e(t)‖2

to decrease in view of v = ‖e‖2
2/2. In this situation, this residual error |ej (t)| would decease

into the bound to stop v deceasing. On the other hand, we have

‖y(t) − W−1(t)u(t)‖2 = ‖W−1(t) (W(t)y(t) − u(t)) ‖2

� ‖W−1(t)‖F ‖e(t)‖2 � ϕW

√
�n

i e2
i (t)

�
√

nϕW max
1�i�n

|ei(t)|.

Thus, it follows from the above estimations that

lim
t→∞ ‖y(t) − W−1(t)u(t)‖2 � (

√
n + n)ϕW(εm + εDϕWϕu)

2(γρ − εDϕW)
.

Evidently, the steady-state computational error of the perturbed ZNN model (10) can be made
arbitrarily small by increasing the value of the design parameter γ : as γ → ∞, such a
steady-state error of the perturbed ZNN model (10) decreases to zero. �

To prove theorem 2, we first give a lemma.

Lemma 2. Given vectors a ∈ Rn and b ∈ Rn, the following inequality holds:

aT b � ‖a‖2‖b‖2.

The proof of theorem 2. Following the proof of theorem 1, for the perturbed ZNN (10), we
define the solution error e(t) = W(t)y(t)−u(t). The perturbed ZNN (10) is then transformed
into the following error dynamic equation (with e(0) = W(0)y(0) − u(0)):

ė = −γF(e) − �DW−1e + �m − �DW−1u.
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Define a Lyapunov-like positive-definite function v(t) = ‖e(t)‖2
2

/
2. The time derivative of

v(t) along the state trajectory of (A.1) is derived as (A.2) and repeated below for the readers’
convenience:

v̇ = −γ eT F(e) + eT Q + QT

2
e + eT �m + eT (−�DW−1u). (A.6)

With the same results on the first two terms of the above equation, we rederive the following
two inequalities from the remainder term (according to lemma 2):

eT �m � ‖e(t)‖2‖�m‖2 � εm‖e(t)‖2, (A.7)

and

eT (−�DW−1u) � ‖e(t)‖2‖�DW−1u‖2

� ‖e(t)‖2‖�D‖F ‖W−1‖F ‖u‖2

� εDϕWϕu‖e(t)‖2. (A.8)

Then, following (A.4) and substituting (A.7) and (A.8) into (A.6) yields the following:

v̇ � −γρ‖e(t)‖2
2 + εDϕW‖e(t)‖2

2 + εm‖e(t)‖2 + εDϕWϕu‖e(t)‖2

= −(γρ − εDϕW)‖e(t)‖2
2 + (εm + εDϕWϕu)‖e(t)‖2

= −(1 − α)(γρ − εDϕW)‖e(t)‖2
2

+ [−α(γρ − εDϕW)‖e(t)‖2
2 + (εm + εDϕWϕu)‖e(t)‖2], (A.9)

where the weighting parameter α ∈ (0, 1) could be termed as ‘a loosing ratio’.
Evidently, observed from (A.9), the first term −(1 − α)(γρ − εDϕW)‖e(t)‖2

2 � 0 under
the design-parameter requirement γ > εDϕW/ρ. So, for the solution error e(t) satisfying

‖e(t)‖2 � εm + εDϕWϕu

α(γρ − εDϕW)
,

the second term of (A.9) could be dropped. It follows from (A.9) that

v̇(t) � −(1 − α)(γρ − εDϕW)‖e(t)‖2
2

= −2(1 − α)(γρ − εDϕW)v(t);
thus, we have the following exponential convergence about ‖e(t)‖2:

v(t) � exp (−2(1 − α)(γρ − εDϕW)t) v(0)

‖e(t)‖2 � exp (−(1 − α)(γρ − εDϕW)t) ‖e(0)‖2, ∀t ∈ [0, tc], (A.10)

with the exponential convergence rate (1 − α)(γρ − εDϕW) and the convergence time

tc = ln

(
α(γρ − εDϕW)‖e(0)‖2

εm + εDϕWϕu

)/
((1 − α)(γρ − εDϕW))

in view of

exp (−(1 − α)(γρ − εDϕW)tc) ‖e(0)‖2 = εm + εDϕWϕu

α(γρ − εDϕW)
,

((1 − α)(γρ − εDϕW))tc = ln

(
α(γρ − εDϕW)‖e(0)‖2

εm + εDϕWϕu

)
.

Thus, from (A.10) and the above analysis, defining the loosing ratio α ∈ (0, 1) and
convergence time tc, we could have

‖e(t)‖2

⎧⎪⎪⎨
⎪⎪⎩

{
� exp(−(1 − α)(γρ − εDϕW)t)‖e(0)‖2, ∀t ∈ [0, tc],

� εm+εDϕWϕu

α(γρ−εDϕW)
, ∀t ∈ [tc,∞),

‖e(0)‖2 � εm+εDϕWϕu

α(γρ−εDϕW)
;

� εm+εDϕWϕu

α(γρ−εDϕW)
, ∀t ∈ [0,∞), ‖e(0)‖2 � εm+εDϕWϕu

α(γρ−εDϕW)
;
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The proof is thus completed. �

The proof of theorem 3. For the linear activation function, the parameter ρ ≡ 1. From the
proof of theorems 1 and 2, we readily have max1�i�n |ei(t)| � (1 +

√
n)(εm +εDϕWϕu)/2(γ −

εDϕW) under the design-parameter requirement γ > εDϕW. Moreover, the solution error
‖e(t)‖2 of the perturbed ZNN (10) is globally exponentially convergent to or staying within
the error bound (εm + εDϕWϕu)/α(γ − εDϕW), where the exponential convergence rate is
(1 − α)(γ − εDϕW) and the convergence time is

tc = ln

(
α(γ − εDϕW)‖e(0)‖2

εm + εDϕWϕu

) /
((1 − α)(γ − εDϕW)),

for any α ∈ (0, 1).
For the power-sigmoid activation function, the parameter ρ � 1 (where the sign of equality

is taken only for |ei(t)| = 1). From the results of theorem 2, we easily find that, compared to
the linear-activation-function case ρ ≡ 1, the error bound (εm + εDϕWϕu)/α(γρ − εDϕW) is
much smaller (in view of that the parameter ρ is inversely proportional to the error bound), and
the exponential convergence rate (1−α)(γρ −εDϕW) is also faster (in view of the exponential
decay with the parameter ρ). In addition, according to theorem 1, we have the same results,
for which the (steady-state) analysis has two parts, i.e. |ei(t)| � 1 and |ei(t)| > 1.

(i) For a small error |ei(t)| � 1, the sigmoid part of f (·) is activated with f (|ei(t)|) � |ei(t)|
and ρ � 1. Compared to the linear-activation-function case ρ ≡ 1, v̇ becomes more
negative according to (A.4) (which implies a faster convergence). Meanwhile, the upper
bound of |ei(t)| becomes smaller according to (A.5). In addition, the design-parameter
requirement γ > εDϕW/ρ is relaxed with ρ � 1, as compared to the linear-activation
case.

(ii) For a large error |ei(t)| > 1, the power part of f (·) is activated with f (|ei(t)|) =∣∣ep

i (t)
∣∣ � |ei(t)| and ρ � 1. From the proof of theorem 1, the first situation becomes

γ |ei |p−εDϕW|ei |−εm−εDϕWϕu � 0,∀i ∈ {1, 2, . . . , n}, under the requirement γ |ei |p−
εDϕW|ei | > 0, which is a sufficient condition for ensuring v̇ � 0. So, it has the following
relationship:

γ |ei |p � εDϕW|ei | + εm + εDϕWϕu

> εDϕW + εm + εDϕWϕu.

Thus, following the above inequality and the design-parameter requirement, |ei(t)| is
required as

|ei | > max

(
p−1

√
εDϕW

γ
, p

√
εDϕW + εm + εDϕWϕu

γ

)
. (A.11)

Correspondingly, in the linear-activation-function case, the requirement of |ei(t)| for the
sufficient condition of v̇ � 0 is larger than (εm + εDϕWϕu)/(γ − εDϕW). Clearly, the
requirement of |ei(t)| in the power-sigmoid activation function case is much smaller
than that of the linear-function case, in view of the (p − 1)st/pth root (which means
easier satisfaction of the sufficient condition of v̇ � 0 in this error range and smaller
|ei(t)| in power-sigmoid function cases). In addition, (A.11) indicates that the parameter
requirement on γ can be removed in this case. Furthermore, when the model-implement
errors are larger, the amplifying effect of the power activation function in this error range,∣∣ep

i (t)
∣∣ � |ei(t)|, makes v̇ more negative (which implies a faster convergence again).
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Summarizing the above analysis, we know that, for the whole error range ei(t) ∈
(−∞, +∞) (except the isolated points |ei(t)| = 1,∀i, with equal performance), the perturbed
ZNN model (10) using power-sigmoid activation functions has superior robustness, as
compared to the case of using linear activation functions. Furthermore, the results of
theorem 2 indicate how a faster and lower bound could be obtained when using the power-
sigmoid function, compared with the linear function. �
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